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a b s t r a c t

In this paper we propose two approaches to connect the functional topology theory of
Clementino et al. (2004) [4] with the situation in the category Sch of schemes. In a first
approach, we extend an example from [4] to a more general pattern for obtaining a class
of ‘‘closed morphisms’’ from two auxiliary classes, ‘‘closed embeddings’’ and newly added
‘‘surjections’’. In a second approach we apply [4] to the presheaf category over Sch, and
recover the notions of properness and separatedness on Sch.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Among the most fundamental properties in general topology are the Hausdorff property and compactness of topological
spaces, and their relative counterparts, separatedness and properness for continuous functions. Efforts of abstracting these
notions to more general categorical contexts endowed with some notion of ‘‘closedness’’ or ‘‘properness’’ date back at
least to the seventies with work of Herrlich [12], Manes [19], Penon [23], and [22]. A richer theory was developed for
categories endowed with a factorization system [1], see the work of Herrlich, Salicrup and Strecker [13] with applications
in topology, group and order theory. In the nineties, once the notion of a ‘‘closure operator’’ on a category endowed with
a factorization structure was available, results quite close to the original topological situation were obtained, see [5], with
applications to Top, Birkhoff closure spaces, uniform spaces, topological groups and locales. In [25] Tholen observed that
both the class of separated morphisms and the class of proper morphism can be expressed in terms of an auxiliary class of
‘‘closedmorphisms’’ and these ideas grew out to a theory called ‘‘functional approach to topology’’ developed in the context
of the auxiliary class of closed morphisms linked to a given factorization system; see the work of Clementino, Giuli and
Tholen [4]. Applications of this setting include approach spaces, a common generalization of topological and metric spaces
[6]. Recently, in order to capture more general categories of lax algebras, Hofmann and Tholen [14] adapted the setting,
replacing the class of closed morphisms by an auxiliary class of ‘‘proper maps’’.

The present paper grew out of the observation of the striking similarities between the ingredients and results in [4] on
the one hand, and the situation in algebraic geometry on the other hand. It is well known that the notions of separatedness
and properness of underlying topological spaces are inappropriate for schemes. Indeed, spectra of commutative rings, the
building blocks for schemes, are always compact and never (unless in trivial cases) Hausdorff, whereas one actually wants
these affine schemes to be ‘‘morally’’ Hausdorff but not compact. The correct notions due to Grothendieck [24] – called
separatedness and properness both for objects and morphisms – are based upon the familiar ‘‘correct’’ notion of closed
morphisms (i.e. morphisms of schemes that are closed on the underlying topological level) bymeans of the same categorical
definitions used in all higher approaches: separated means that the diagonal morphism is closed, proper (or rather the part
which – in the scheme literature – is usually referred to as ‘‘universally closed’’; in the scheme language the word proper is
reserved for universally closed + separated + finite type) means pullback stably closed.

Another feature which raises hopes that the category of schemes may fit into the approach of [4] is the prominent role
of a natural class of ‘‘closed embeddings’’. In the functional topology approach, these are obtained from a ‘‘background’’
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factorization system (E, M) as the closedmorphisms in M. In Sch, we have the natural class of closed immersions. However,
it is precisely here that lies the main obstacle: in the category of schemes, there is no natural notion of ‘‘not necessarily
closed’’ image of a morphism, whence no background factorization system. Although the closed immersions do form part
of a factorization system themselves, taking this as background does not fit into the theory of [4], and it certainly does not
allow to distinguish closed morphisms based upon factorizations through closed embeddings in the way this is possible for
topological spaces. In this paper we present several solutions which allow to naturally connect the two setups in spite of
this difficulty.

This paper is a first step in a broader project where the aim is to investigate the role of functional topology in geometric
settings, with the eye on possible extensions to settings in so called non-commutative geometry. Currently, notions of
properness are often based upon cohomological properties (see e.g. [17,26]) rather than upon the internal structure of
spaces (investigated for instance in [21]). With the growing realization that not all ‘‘spaces’’ can be modeled entirely
on cohomological ground (see [18,15,16]), the development of a functional approach, and the comparison with existing
cohomological approaches, seems worthwhile and remains work in progress.

The paper is divided into three main sections.
In Section 2, we present our account of what can be considered as ‘‘basic functional topology’’. If one agrees that the

notions of separated and proper morphisms and their properties and interactions are central to the theory, one can try to
develop things with as little additional data as possible. We discuss both the possibility of taking a single class F of ‘‘closed
morphisms’’ as input, or the possibility of considering an additional F0 ⊆ F of ‘‘closed embeddings’’. Here, we do not include
a notion of more general embeddings. To obtain some of the familiar behavior of separated and proper morphisms, we
identify the crucial property that for any morphisms, the diagonal is closed if and only if it is proper if and only if it is a
closed immersion. Our presentation is similar in spirit to [25], where separated morphisms are immediately defined with
respect to the proper morphisms. Note that it is possible to take F equal to the proposed (pullback stable) class of proper
morphisms in both approaches.

In Section 3 wework relative to a factorization system as in [4]. We propose a definition of the class of closedmorphisms
based upon two auxiliary classes (together called a ‘‘closed structure’’), a class of ‘‘closed embeddings’’, required to be
composition closed and pullback stable, and a class of ‘‘surjections’’, required to be composition closed. Our definition of
the associated class of ‘‘closed morphisms’’ (Definition 3.12) generalizes Example 3.11 from [4]. Precisely, we declare a
morphism to be closed if for every closed embedding landing in the domain, the factorization of the composition is given by
a surjection followed by a closed embedding. We further collect some properties related to [4] and Section 2 in Section 3.3.

Our application to the category Sch is twofold. In a first step, in Section 3.6, we characterize within this formalism the
morphisms whose natural closed image in the larger category LRS of locally ringed spaces is a scheme. More precisely, we
describe these morphisms as the sch-closed morphisms with respect to a relative closure operator sch in the sense of [3].

In a second step, in Section 3.8, we choose on the category Sch the closed structure with the closed immersions as closed
embeddings, and with as surjections the surjective (on the underlying set theoretic level) morphisms of schemes. If we
restrict our attention to the sch-closedmorphisms, among them the closed (on the underlying topological level) morphisms
now correspond precisely to the morphisms that are closed with respect to the newly introduced closed structure. Further
and most importantly, the closed structure yields the correct classes of proper and separated morphisms. This result is
‘‘lifted’’ in a suitable sense (see Section 3.7) from the situation on Top, endowedwith the (surjections, closed embeddings) as
closed structure relative to the (densemaps, closed embeddings) factorization system. The observation that this equivalently
describes the standard closed morphisms on Top (see Section 3.4) is crucial to our approach.

In Section 4 we develop a general approach for capturing proper and separated morphisms based upon presheaf
categories. Here, the idea is to use the standard factorization system on the presheaf category over an original category
of interest as ‘‘background’’. This is a very nice factorization system which fits into the setup of [4]. Our starting point is a
pullback closed class of morphisms in the original category, which we would like to consider as ‘‘proper morphisms’’. Using
the notion of representable morphisms, we first define a class of morphisms on the presheaf category which restricts to
the class of candidate proper morphisms on the original category. Then we introduce closed embeddings as being precisely
the images of the morphisms in this class. In this way, we always obtain a closed structure (Section 4.3) on the presheaf
category. Finally, in Section 4.4, we prove that in case we start with the category Sch – upon restriction to this category –
this procedure yields the correct classes of separated and proper morphisms.

2. Basic functional topology

In [4], functional topology was introduced as a categorical framework in which certain ideas from topology, revolving
around closed embeddings, closed morphisms, proper morphisms and separated morphisms, can be developed. The
approach in [4] makes use of a ‘‘background’’ factorization system for this development. In particular, one makes use of
a notion of ‘‘embeddings’’ – the second class in the factorization system – which is such that the closed embeddings are
precisely the closed morphisms that are at the same time embeddings. In this section, we present a more basic approach
which only takes closed morphisms (see Definition 2.7), and in a second version closed morphisms and closed embeddings
(see Definition 2.10), as an input.We show thatmany of the standard properties relating the secondary notions of proper and
separated morphisms hold true under the assumption that for the diagonal of an arbitrary morphism, it is equivalent to say
that it is closed, or that it is proper, or that it is a closed embedding. This fundamental property is fulfilled in various different
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settings where natural classes of separated and proper morphisms are present and share a number of basic properties, like
pullback stability and closure under compositions of the individual classes, and the fact that the separated morphisms are
left cancellable with respect to the proper morphisms. Our setup encompasses both the setup of [4], and the situation in
various categories of locally ringed spaces, like the category of schemes and the category of complex analytic spaces. As we
will discuss in Sections 3 and 4, the theory of [4] does not apply to these categories without certain modifications either to
the theory, or else to the categories. Our treatment in this section is similar in spirit to [25].

2.1. Classes of morphisms

Let C be a category. In this section we introduce some notation and terminology concerning classes of morphisms in C.
We will make use of the standard classes Mor of all morphisms, Iso of isomorphisms, Mono of monomorphisms and Epi

of epimorphisms. For two classes of morphisms F and H, we denote by F ⊆ H that f ∈ F implies f ∈ H.
Definition 2.1. Let F be a class of morphisms.
(1) A morphism g is F-left cancellable if gh ∈ F implies h ∈ F.
(2) A morphism g is F-right cancellable if hg ∈ F implies h ∈ F.
(3) A morphism g is F-dense if g = fu with f ∈ F implies f ∈ Iso.
(4) A morphism g is F-orthogonal if for fu = vg with f ∈ F, there is a unique morphism w with fw = v and wg = u.

We thus obtain the corresponding classes F − LCan of F-left cancellable morphisms, F − RCan of F-right cancellable
morphisms, F − Dense of F-dense morphisms, F − Ortho of F-orthogonal morphisms.

We mention the following easy fact:
Lemma 2.2. If F is pullback-stable, then Mono ⊆ F − LCan.

2.2. Proper and separated morphisms

Let C be a finitely complete category. For a morphism g : X −→ Y , the diagonal ∆g of g is the unique morphism
∆g = (1X , 1X ) : X −→ X ×Y X to the pullback X ×Y X of g along itself.
Definition 2.3. Let F be a class of morphisms.
(1) A morphism g is F-proper if every pullback of g is in F.
(2) A morphism g is F-separated if the diagonal ∆g ∈ F.
(3) A morphism g is F-perfect if it is F-proper and F-separated.

We thus obtain the corresponding classes F − Prop of F-proper morphisms, F − Sep of F-separated morphisms and
F − Perf of F-perfect morphisms.
Lemma 2.4. (1) F − Prop ⊆ F.
(2) F − Prop is pullback-stable.
(3) If F ⊆ G then F − Sep ⊆ G − Sep and F − Prop ⊆ G − Prop.
(4) If F0 ⊆ F with F0 pullback-stable, then F0 ⊆ F − Prop.
(5) If Iso ⊆ F, then Iso ⊆ F − Prop.
(6) If F is closed under compositions, then so is F − Prop.
(7) Mono = Iso − Sep.
(8) If Iso ⊆ F, then Mono ⊆ F − Sep.
Lemma 2.5. Suppose F − Sep = (F − Prop) − Sep. Then we have:
(1) F − Sep is pullback-stable.
(2) If F is closed under compositions, then so is F − Sep.
(3) (F − Sep) − LCan = Mor.

We have the following key lemma:
Lemma 2.6. If Iso ⊆ F and if F is pullback-stable and closed under compositions, then Mono ⊆ F − Sep ⊆ F − LCan.
Proof. Consider gf ∈ F with g ∈ F − Sep. We obtain the following diagram of pullbacks:

X
f // Y

g // Z

X ×Z Y

p′
1

OO

f×1Y
// Y ×Z Y

p1

OO

p2
// Y

g

OO

X

(1,f )

OO

f
// Y

∆g

OO

Since gf ∈ F, the pullback p2(f × 1Y ) ∈ F. Since ∆g ∈ F, the pullback (1, f ) ∈ F. Thus the composition p2(f × 1Y )(1, f ) =

p2∆g f = f ∈ F. �
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2.3. Closed classes and closed pairs

Let C be a finitely complete category.

Definition 2.7. A pre-closed class on C is a class of morphisms F with Iso ⊆ F and such that F is closed under composition.
Morphisms in F are called closed morphisms. If a pre-closed class F on C is chosen, we put Prop = F − Prop, Sep = F − Sep
and Perf = F − Perf and we simply speak of proper, separated and perfect morphisms. A pre-closed class F is called a closed
class if

(c) Sep ⊆ Prop − Sep.

A pre-closed class F is called a stable class if F is pullback-stable.

Clearly, a stable class is a closed class.
We obtain the following properties:

Proposition 2.8. Let F be a pre-closed class on C.

(1) Iso ⊆ Perf.
(2) Mono ⊆ Sep.
(3) Prop is closed under composition and is pullback-stable.
(4) Let P be closed under composition and pullback-stable with Sep ⊆ P − Sep. Then Sep ⊆ P − LCan.

Let F be a closed class on C.

(1) Sep = Prop − Sep.
(2) Prop,Sep and Perf are closed under composition and are pullback-stable.
(3) Sep ⊆ Prop − LCan, Sep ⊆ Perf − LCan.
(4) Sep − LCan = Mor.

Remarks 2.9. (1) The property (c) which makes a pre-closed class into a closed class is somehow circumvented in the
approachdeveloped in [25],where, relative to a pre-closed classF, the relevant class of ‘‘separated’’morphisms is defined
to be (F − Prop) − Sep.

(2) What we call here a stable class is called a topology in [14].

Many examples of closed classes arise in the following way:

Definition 2.10. A pre-closed pair (F0, F) on C consists of two classes of morphisms with F0 ⊆ F and Iso ⊆ F0 ⊆ Mono
such that the following conditions hold:

(a) F is closed under compositions.
(b) F0 is pullback-stable and closed under composition.

Morphisms in F0 are called closed immersions and morphisms in F are called closed morphisms. A pre-closed pair is called a
closed pair if

(c) F − Sep ⊆ F0 − Sep.

Proposition 2.11. Let (F0, F) be a pre-closed pair on C. We have:

(1) F is a pre-closed class on C.
(2) F0 ⊆ Perf.

Let (F0, F) be a closed pair on C. We have:

(1) F is a closed class on C.
(2) Sep ⊆ F0 − LCan.
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Proof. (1) Since F0 ⊆ F and F0 is pullback-stable, we have F0 ⊆ F − Prop and thus F − Sep ⊆ F0 − Sep ⊆

(F − Prop) − Sep. �

Example 2.12. In the category Top of topological spaces, take for F the closedmorphisms and for F0 the closed embeddings.
Then (F0, F) is a closed pair on Top, and the resulting notions of separated and proper maps are the standard ones for
topological spaces [2]. More generally, we will see in Section 3.2 that with respect to a proper factorization system (E, M),
an (E, M)-closed class F in the sense of [4] yields a closed pair (F0 = F ∩ M, F).

Example 2.13. In the category Sch of schemes, take for F the closed morphisms and for F0 the closed immersions (see
Section 3.6). It is well known that F − Sep ⊆ F0 − Sep so (F0, F) is a closed pair. In Sch, a morphism is called separated if
it is F-separated, it is called universally closed if it is F-proper, and it is called proper if it is F-perfect and of finite type. Let
P be the class of morphisms of finite type. Then P is closed under composition and is pullback-stable. Furthermore, F0 ⊆ P.
Hence, Sep ⊆ P − Sep and Proposition 2.8(5) applies. Consequently, Sep ⊆ P − LCan and Sep ⊆ (P ∩ Perf) − LCan, and
we recover the fact that separated morphisms of schemes are left cancellable with respect to the proper maps of schemes.
It is then readily seen that Propositions 2.8 and 2.11 remain valid with Perf replaced by P ∩ Perf.

Example 2.14. In the category Sch, let P be the class of quasi-compact morphisms. Then Iso ⊆ P and P is pullback-stable
and closed under compositions. A morphism is called quasi-separated if it is in P − Sep. Thus Lemma 2.6 yields that quasi-
separated morphisms are left cancellable with respect to quasi-compact morphisms.

2.4. Comparison functors

In this section, we investigate some elementary properties related to a finite limit preserving functor ϕ : C −→ C ′

between finitely complete categories. Let F′ be a class of morphisms in C ′, and consider the class ϕ−1(F′) on C.

Proposition 2.15. (1) ϕ−1(F′
− Sep) = ϕ−1(F′) − Sep.

(2) ϕ−1(F′
− Prop) ⊆ ϕ−1(F′) − Prop.

Proof. (1) easily follows from the fact that for f : X −→ Y in C, the image under ϕ of the diagonal ∆f : X −→ X ×Y X in C
is given by the diagonal ϕ(∆f ) = ∆ϕ(f ) : ϕ(X) −→ ϕ(X) ×ϕ(Y ) ϕ(X) in C ′. For (2), suppose ϕ(f ) is F′-proper and consider a
pullback

X
f // Y

X ′

OO

f ′
// Y ′

OO

in C. Since ϕ preserves the pullback, ϕ(f ′) is a pullback of the F′-proper morphism ϕ(f ), whence ϕ(f ′) ∈ F′. �

Remark 2.16. Note that the converse inclusion in Proposition 2.15 is hard to control in general, since it requires one to
consider arbitrary pullbacks of ϕ(f ) in C ′.

Corollary 2.17. Let (F0, F) be a closed pair on C and (F′

0, F′) a closed pair on C ′. Suppose:

(1) One of the following holds:
(a) ϕ−1(F′) ⊆ F.
(b) ϕ−1(F′

− Prop) ⊆ F − Prop.
(2) One of the following holds:

(a) F0 ⊆ ϕ−1(F′

0)

(b) F ⊆ ϕ−1(F′)
(c) F − Prop ⊆ ϕ−1(F′

− Prop)

Then it follows that:

(1) ϕ−1(F′
− Sep) = F − Sep.

(2) ϕ−1(F′
− Prop) ⊆ F − Prop.

Example 2.18. Let FSch be the category of finite type schemes overC, endowedwith the same closedmorphisms and closed
immersions as Sch in Example 2.13, and let An be the category of complex analytic spaces [10]. Let (−)an : FSch −→ An
be the analytification functor [24], and | − | : An −→ Top the forgetful functor to the underlying topological space. We
consider the composed functor

ϕ = |(−)an| : FSch −→ Top.

One of the fundamental motivations for the adequate nature of the notions of properness and separatedness in algebraic
geometry, is the fact that a morphism f : X −→ Y of finite type schemes is separated (resp. proper) in the standard sense
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of Example 2.13 if and only if |f an| is separated (resp. perfect) in Top with the standard notions of Example 3.20. The entire
dictionary between notions in FSch and An in [24] is based upon the subtle [24, Proposition 2.2] involving constructible
sets. Although closed morphisms and universally closed morphisms are not explicitly considered in the dictionary, [24,
Proposition 2.2] readily yields that closedmorphisms are reflected byϕ. Since by construction, closed immersions of schemes
are mapped to closed analytic subspaces by analytification, and hence to closed embeddings under ϕ, conditions (1)(a) and
(2)(a) in Corollary 2.17 are fulfilled, and thus it already follows that separated maps are preserved and reflected, and proper
maps are reflected to universally closed maps. We should note however, that the direct proofs of these facts using [24,
Proposition 2.2] are equally immediate. On the other hand, the fact that proper maps of schemes (with finite type included
in the definition of properness) get mapped to perfect maps under ϕ requires an entirely different proof, based upon the
familiar behavior of projective morphisms and Chow’s Lemma.

3. Functional topology using factorizations

In [4], a general functional topology framework was set up against a ‘‘background’’ factorization system on the category.
This approach has some advantages. First of all, if one has natural images of morphisms, one can formulate (and prove)
intuitive statements like the fact that ‘‘the image of a closed subobject under a closedmorphism is again a closed subobject’’.
In fact, such an approach can be situated half-way between the basic setup of Section 2 and the richer setting of categories
endowedwith closure operators [7,5]. Secondly, factorization systems provide a rich source of functional topology examples.
Indeed, if a category has a natural class of ‘‘closed subobjects’’, the higher intuitive statement can often be taken as the
definition of a class of closed morphism.

However, if we want to apply these ideas for instance to the category of schemes, we are faced with a number of
difficulties. This category does have a natural notion of closed subobjects, the closed immersions, but there is no natural
class of general (i.e. not necessarily closed) subobjects which is part of a factorization system. Indeed, it is well known that
for a morphism of schemes, the image of the underlying morphism of topological spaces can obviously be endowed with
the subspace topology, but it cannot be endowed further with a scheme structure. In contrast, the closed immersions are
the second class of a factorization system on schemes, the first class being given by the scheme theoretically dominant
morphisms. If we compare this with the setting of a category with an ‘‘original’’ factorization system and a closure operator,
which gives rise to a second ‘‘shadow’’ factorization system of dense morphisms and closed embeddings, then it is as if we
find ourselves in a situation where only the shadow factorization system is present and everything else has vanished.

In this section,we extend the theory of [4] in such away that examples like the category of schemes are naturally included.
Our inspiration comes from the situation where we have two factorization systems as just described (see Section 3.4). If
we think for instance about topological spaces, then we have the original factorization system of surjections followed by
embeddings, and the shadow factorization system of dense morphisms followed by closed embeddings. A morphisms of
topological spaces has a closed image precisely when the two factorizations coincide. To express this, we can take either
of the two factorization systems as primary: we can say that in the original factorization, the embedding has to be a
closed embedding, or equivalently we can say that in the shadow factorization, the dense morphism has to be a surjection.
Generalizing these two possibilities at once, we define a closed structure (with respect to a background factorization system)
using the input of two special classes of morphisms: a first class of morphism, called surjections, and a second class of
morphisms, called closed embeddings (see Definition 3.12). With respect to a closed structure, a morphism is called closed
if and only if for every closed embedding landing in the domain, the image factorization of the composition is given by
a surjection followed by a closed embedding. We show that the closed embeddings and the closed morphisms together
constitute a pre-closed pair in the sense of Section 2, and that some other familiar properties from [4] carry over to this
setup. Using the forgetful functor from schemes to topological spaces, in Section 3.8 we show that the surjective morphisms
of schemes and the closed immersions of schemes constitute a closed structure which yields the correct classes of proper
and separated morphisms.

In order to obtain an understanding of the relation between the closed morphisms provided by this approach on the
one hand, and morphisms with underlying closed morphism of topological spaces on the other hand, we are faced with the
problem that the image factorization in Sch is not necessarily mapped to the (dense map, closed embedding) factorization
in Top by the forgetful functor. For morphisms where this does hold true, our approach actually yields the correct notion of
closedness. In Section 3.6, we identify a broad class ofmorphisms – encompassing for instance all quasi-compactmorphisms
– forwhich this applies. Our treatmentmakes use of the larger category LRS, and a relative ‘‘schematization’’ closure operator
on the inclusion Sch −→ LRS, which we introduce on the way (Section 3.5).

3.1. Factorization systems

In this section, we recall some facts about factorization systems [8,1]. Let C be a finitely complete category.
Definition 3.1 ([1]). A factorization system (E, M) consists of two classes of morphisms, a first class E and a second class M,
such that:
(F1) E and M are closed under composition with isomorphisms.
(F2) Every E-morphism is M-orthogonal.
(F3) Every morphism f decomposes as f = mewith m ∈ M, e ∈ E.
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Proposition 3.2 ([1]). Let (E, M) be a factorization system. We have:
(1) E = M − Ortho.
(2) E ∩ M = Iso.
(3) (M

op
, E

op
) is a factorization system on C

op
.

Next we list a few properties of M. By Proposition 3.2(3), the dual properties hold for E.

Proposition 3.3 ([1]). Suppose M is the second class of morphisms of a factorization system. Then we have Iso ⊆ M, M is closed
under compositions and is pullback-stable, M ⊆ M − LCan, Mono ⊆ M − LCan.

We recall the following useful fact:

Proposition 3.4 ([1, Proposition 14.11]). Let (E, M) be a factorization system. The following are equivalent:
(1) E ⊆ Epi.
(2) All sections are contained in M.

Lemma 3.5. Let M ⊆ Mono with M pullback-stable. Then M − Ortho = M − Dense.

Proof. See [4, Lemma 2.2].

Lemma 3.6. Let M ⊆ Mono be a class of morphisms. For a factorization f = muwith m ∈ M, consider the following properties:
(a) The M-subobject m is minimal among the M-subobjects m′ for which there exists a factorization f = m′u′.
(b) The morphism u is M-dense.

We have:
(1) If M is closed under composition, then (a) implies (b).
(2) If M ⊆ M − LCan, then (b) implies (a).

Proof. Suppose first (a). We show that u is dense. Write u = m′u′ with m′
∈ M. Then f = mm′u′ with mm′

∈ M since M is
closed under compositions. From the minimality ofm we deduce thatm′ is an isomorphism as desired.

Suppose next (b). We show that m is minimal. Hence, consider m′
∈ M such that there are factorizations f = m′u′ and

m′
= mn. By M-left cancellability of M, n ∈ M. Now f = mnu′ whence since m is mono, u = nu′. Now density of u yields

that n is an isomorphism as desired. �

We obtain the following useful criteria for M ⊆ Mono to be part of a factorization system:

Lemma 3.7. Let M ⊆ Mono and let E = M − Dense.
(1) Suppose M is pullback-stable and is closed under composition with isomorphisms and (E, M) satisfies (F3). Then (E, M) is a

factorization system.
(2) Suppose Iso ⊆ M and that M is pullback-stable and closed under composition. Furthermore, suppose for every morphism

f ∈ C there is a factorization f = mu such that m ∈ M is minimal among the M-subobjects m′ for which there exists
a factorization f = m′u′. Then (E, M) is a factorization system and the factorization f = mu as above is the (E, M)-
factorization of f .

3.2. (E, M)-closed classes

In this section, we discuss (E, M)-closed classes as introduced by Clementino, Giuli and Tholen [4]. Let C be a finitely
complete category endowed with a factorization system (E, M) with M ⊆ Mono and E ⊆ Epi.

Definition 3.8 ([4]). An (E, M)-closed class F is a class of morphisms such that the following conditions hold:
(a) Iso ⊆ F and F is closed under compositions.
(b) F ∩ M is pullback-stable.
(c) E ⊆ F − RCan.

Proposition 3.9. If the class F satisfies (a) and (b) in Definition 3.8, then we have that (F0 = F ∩ M, F) is a closed pair on C.

Proof. Conditions (a) and (b) in Definition 2.10 are fulfilled by definition. Since E ⊆ Epi, By Proposition 3.4, M contains the
sections and hence F − Sep ⊆ (F ∩ M) − Sep. �

Remark 3.10. Condition (c) in Definition 3.8mainly ensures the intuitive fact that ‘‘under a closedmap, the image of a closed
subobject is a closed subobject’’.

Example 3.11 ([4, Exercise 2.1.4]). Let Iso ⊆ F0 ⊆ M with F0 pullback-stable and closed under composition. Define the
morphism class F by (f : X −→ Y ) ∈ F if and only if for everym : X ′

−→ X in F0, in the (E, M)-factorization fm = µϵ with
µ ∈ M and ϵ ∈ E we have µ ∈ F0. Then F0 = F ∩ M, F satisfies (a) and (b) in Definition 3.8, and M is F-left cancellable.
Furthermore, if E is stable under pullbacks along morphisms in F0, then F is an (E, M)-closed class.

In the next section, rather than generalizing Definition 3.8, wewill generalize Example 3.11 in order to be able to capture
the situation in certain categories of ringed spaces.
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3.3. (E, M)-closed structures

Let C be a finitely complete category endowed with a factorization system (E, M) with M ⊆ Mono. From now on, we
denote the (E, M)-factorization of a morphism f : X −→ Y by

X
ϵ(f )

// f (X)
µ(f )

// Y .

Definition 3.12. An (E, M)-pre-closed structure (P, F0) (or simply pre-closed structure if (E, M) is understood) consists of
two classes of morphisms such that:

(a) Iso ⊆ F0 ⊆ M and F0 closed under compositions and pullback-stable.
(b) Iso ⊆ P and P is closed under compositions.

Morphisms in F0 are called closed embeddings and morphisms in P are called surjections. With respect to a pre-closed
structure, a morphism f : X −→ Y is called closed if and only if for every m : X ′

−→ X in F0, we have ϵ(fm) ∈ P
and µ(fm) ∈ F0. The class of closed morphisms is denoted by F. The pre-closed structure is called a closed structure if the
following condition is satisfied:

(c) F − Sep ⊆ M − Sep.

Proposition 3.13. Let (P, F0) be an (E, M)-pre-closed structure. We have:

(1) F is closed under compositions, thus (F0, F) is a pre-closed pair.
(2) M ⊆ F − LCan.
(3) F0 = F ∩ M.
(4) F is closed under pullback along morphisms in F0.

Let (P, F0) be an (E, M)-closed structure. We have:

(5) F − Sep = F0 − Sep.
(6) (F0, F) is a closed pair.

Proof. For a composition gf andm ∈ M we consider the (E, M)-factorizations:

X
f // Y

g // Z

X ′

m

OO

ϵ
// Y ′

µ

OO

ϵ′

// Z ′

µ′

OO

(1) Suppose f , g ∈ F and m ∈ F0. Then from f ∈ F we obtain ϵ ∈ P and µ ∈ F0 and from g ∈ F we obtain ϵ′
∈ P and

µ′
∈ F0. Now ϵ′ϵ and µ′ constitute the (E, M)-factorization of gfm and since P is closed under compositions, it follows that

ϵ′ϵ ∈ P and µ′
∈ F0 as desired.

(2) Suppose g ∈ M, gf ∈ F and m ∈ F0. Now ϵ and gµ constitute the (E, M)-factorization of gfm. Consequently, ϵ ∈ P
and gµ ∈ F0. Since g ∈ M ⊆ Mono and F0 pullback-stable and closed under compositions, by Lemma 2.6 g is F0-left
cancellable whence also µ ∈ F0.

(3) Suppose f ,m ∈ F0. Then fm ∈ F0 ⊆ M hence µ(fm) = fm ∈ F0 and ϵ(fm) = 1X ′ ∈ P. It follows that f ∈ F ∩ M.
Conversely, if f ∈ F ∩ M we consider 1X as F0-subobject. It follows that f = µ(f 1X ) ∈ F0.

(4) Consider the pullback square

X
f // Y

P

m′

OO

f ′
// Y ′

m

OO

with f ∈ F, m ∈ F0. Thenmf ′
= fm′

∈ F whence by (1), f ′
∈ F.

(5) Immediate from (c) and (3).
(6) Immediate by (a), (1) and (4). �

Remarks 3.14. (1) Suppose in Definition 3.12 we have E ⊆ Epi. Then by Proposition 3.4, Mor ⊆ M − Sep so condition (c)
becomes automatic.

(2) Supposewe take P = E. Then amorphism f : X −→ Y is closed if and only if form : X ′
−→ X in F0 wehaveµ(fm) ∈ F0.

Thus, this is precisely the situation of Example 3.11.
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(3) Suppose we take F0 = M. Then a morphisms f : X −→ Y is closed if and only if for m : X ′
−→ X in F0 we have

ϵ(fm) ∈ P.

We finally note that the following does not make use of the assumption E ⊆ Epi in Example 3.11:

Proposition 3.15. Let (E, F0) be an (E, M)-pre-closed structure. If E is closed under pullbacks along F0, then E is F-right
cancellable.

3.4. Two factorization systems

Let ι : C −→ D be the inclusion of a full subcategory, and suppose both categories are finitely complete. Suppose D
is endowed with a factorization system (E, M) and C with a factorization system (D, F0) such that F0 ⊆ M ⊆ MonoD .
Consequently, F0 ⊆ MonoC , E = M − Dense in D , D = F0 − Dense in C and E ∩ C ⊆ D. For a morphism f : X −→ Y in D
we denote the (E, M)-factorization as in Section 3.3 and for f in C we denote the (D, F0)-factorization by

X
δ(f )

// f (X)
ϕ(f )

// Y .

Lemma 3.16. For a morphism f : X −→ Y in C, the following are equivalent:

(1) The (E, M)-factorization and the (D, F0)-factorization of f are isomorphic.
(2) µ(f ) ∈ F0.
(3) δ(f ) ∈ E.

Put E′
= E ∩ C.

Proposition 3.17. We have that (E′, F0) is a (D, F0)-pre-closed structure, and the following are equivalent for f : X −→ Y
in C:

(1) f is closed.
(2) For every m : X ′

−→ X in F0, the (E, M)-factorization and the (D, F0)-factorization of fm are isomorphic.

In case ι = 1C : C −→ C, (E, F0) is also an (E, M)-pre-closed structure and f is closed with respect to (E, M) if and only if it is
closed with respect to (D, F0). Further, (E, F0) is an (E, M)-closed structure if and only if it is a (D, F0)-closed structure.

Let F denote the class of closed morphisms as described in Proposition 3.17

Lemma 3.18. F ∩ D ⊆ E.

Proof. Consider f ∈ F ∩ D. Since f ∈ F, we have µ(f ) = ϕ(f ) and ϵ(f ) = δ(f ). But since f ∈ D, ϕ(f ) is an isomorphism and
hence f ∼= ϵ(f ) ∈ E. �

Example 3.19. The situation (with ι = 1C) applies if (E, M) is a factorization system on C and F0 is the class of closed
subobjects with respect to an idempotent, weakly hereditary closure operator on C in the sense of [7]. In Section 3.5, we
will present a notion of relative closure operator which yields examples with ι ≠ 1C .

Example 3.20. On Top with its Kuratowski closure, we make the following choices:

• M is the class of embeddings.
• E is the class of surjective morphisms.
• F0 is the class of closed embeddings.
• D is the class of dense morphisms.

The (E, M)-factorization of f : X −→ Y arises from endowing the set theoretic image f (X)with the subspace topology from
Y , and the (D, F0)-factorization of f arises from endowing the closure f (X) with the subspace topology from Y .

Then (E, F0) is an (E, M)-closed structure by Proposition 3.17 and Remark 3.14 (1), and consequently (E, F0) is a (D, F0)-
closed structure with the same class F of closed maps. Clearly, these are precisely the usual closed maps i.e. morphisms
mapping closed subsets to closed subsets. Lemma 3.18 now becomes the familiar fact that a morphism which is closed and
dense is surjective.

3.5. Relative closure operators

In this section we collect some facts concerning closure operators relative to an inclusion functor in the sense of [3].
Let ι : C −→ D be the inclusion of a full subcategory where D is endowed with a factorization system (E, M) with
M ⊆ Mono(D). We suppose both categories are finitely complete. We suppress ι in all notations. For X ∈ C, we denote by
SubC(X) theM-subobjects inC and by SubD(X) theM-subobjects inD . For amorphism f : X −→ Y inD andm ∈ SubD(X),
the image ofm under f is by definition the M-part of the (E, M)-factorization of the composition fm, and is denoted by f (m).
The image of f is by definition the image of 1X under f , and is denoted f (X) = f (1X ).
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Definition 3.21. Let c = (cX )X∈C consist of a family of maps

cX : SubD(X) −→ SubC(X).

(1) For X ∈ C, a subobjectm ∈ SubC(X) is c-closed if cX (m) = m.
(2) For X ∈ C, a subobjectm ∈ SubD(X) is c-dense if cX (m) = 1X .
(3) A morphism f : X −→ Y in C is c-closed if for every c-closedm ∈ SubC(X), the image f (m) is c-closed as well.
(4) A morphism f : X −→ Y in C is c-dense if the image f (X) = f (1X ) is c-dense, i.e. cY (f (1X )) = 1Y .

Consider the following conditions:
(1) (extension) For X ∈ C and m ∈ SubD(X), we have m ≤ cX (m). In this case we denote the canonical M-morphism from

the domain ofm to the domain of cX (m) by bX (m), i.e we havem = cX (m)bX (m).
(2) (monotonicity) For X ∈ C and m ≤ m′ in SubD(X), we have cX (m) ≤ cX (m′) in SubC(X).
(3) (continuity) For f : X −→ Y in C andm ∈ SubD(X), we have f (cX (m)) ≤ cY (f (m)) .
(4) (idempotency) For X ∈ C and m ∈ SubD(X), we have cX (cX (m)) = cX (m).
(5) (weak heredity) For X ∈ C and m ∈ SubD(X), bX (m) is a c-dense subobject of the domain of cX (m).

If c satisfies (1) and (2), it is called a local closure operator on ι. If c further satisfies (3), it is called a closure operator on ι.
A (local) closure operator is called idempotent if it satisfies (4) and weakly hereditary if it satisfies (5).
Remark 3.22. The definition of c-closed maps given in (3) is most useful for idempotent closure operators. For a non
idempotent closure operator, it is more important to understand how the image preserves closures, rather than closed
subobjects.

Like for usual closure operators, we have the following familiar characterizations of continuity:
Proposition 3.23. Let c be a local closure operator on ι : C −→ D . Consider the following conditions:
(3) c satisfies (3), i.e. c is a closure operator.
(3′) For f : X −→ Y in C and n ∈ SubD(Y ), we have cX (f −1(n)) ≤ f −1(cY (n)).
(3′′) For every c-closed n ∈ SubC(Y ), we have that f −1(n) ∈ SubD(X) is c-closed as well.

Conditions (3) and (3′) are equivalent. If c is idempotent, these conditions are further equivalent to (3′′).
Inspired by [7], one can use certain closure operators to construct factorization systems on C.

Proposition 3.24. Let ι : C −→ D and (E, M) be as above. Let c be an idempotent, weakly hereditary closure operator on ι. Let
Mc consist of the c-closed M-subobjects of C-objects and let Ec consist of the c-dense C-morphisms.

Then (Ec, Mc) is a factorization system on C, and for a morphism f : X −→ Y in C with (E, M)-factorization given by
f = µ(f )ϵ(f ), the (Ec, Mc)-factorization is given by µc(f ) = cY (µ(f )) and ϵc(f ) = bY (µ(f ))ϵ(f ).
Proof. In the proposed (Ec, Mc)-factorization, the map µc(f ) = cY (µ(f )) is c-closed by idempotency of c and ϵc(f ) =

bY (µ(f ))ϵ(f ) is c-dense since c is weakly hereditary. Using all the properties of a closure operator, it is further shown that
the c-dense morphisms are Mc-orthogonal. �

Clearly, the results of Section 3.4 apply and we obtain:
Proposition 3.25. Let ι : C −→ D , (E, M) on D and (Ec, Mc) on C be as above and put E′

= E ∩ C. Then (E′, Mc) is an
(Ec, Mc)-pre-closed structure on C and a C-morphism is closed with respect to this structure if and only if it is c-closed.

At the other extreme from applications with ι = 1C , we have the following interesting situation. Let ι : C −→ D and
(E, M) on D be as above. Suppose that for every X ∈ C and m ∈ SubD(X), there exists a smallest m′

∈ SubC(X) with
m ≤ m′. Put cX (m) equal to this smallest subobject.
Proposition 3.26. We have that c = (cX )X∈C is an idempotent, weakly hereditary local closure operator on ι. If for every
f : X −→ Y in C and m ∈ SubC(Y ), the D-pullback f −1(m) is in C, c is an idempotent, weakly hereditary closure operator.

We have Mc = M ∩ C, and an arbitrary C-morphism f is c-closed if and only if for every M-subobject in C, the image f (m)
(based upon the (E, M)-factorization of fm) lies in C.

If, for a given ι : C −→ D the local closure operator described in Proposition 3.26 exists, we denote it by cι. We end this
section by illustrating the special role of cι. Let c be an arbitrary local closure operator on ι. By restricting the domains of the
maps

cX : SubD(X) −→ SubC(X)

to SubC(X), we obviously obtain a local closure operator cC on C, which inherits all the properties from c. We now have:
Proposition 3.27. Suppose c is idempotent. Then we have

c = cC ◦ cι,

i.e. for every m ∈ SubD(X) with X ∈ C, we have cX (m) = (cC)X (cι)X (m).
Proof. We omit the subscript X from the notation. Sincem ≤ cι(m), we have c(m) ≤ c(cι(m)) = cC(cι(m)). Conversely, by
definition of cι, we have cι(m) ≤ c(m). Thus, it follows that cC(cι(m)) ≤ cC(c(m)) = c(c(m)) = c(m). �
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3.6. Application to schemes

Let LRS be the category of locally ringed spaces andSch the category of schemes. In this section,we present an application
of Section 3.5 to the inclusion ι : Sch −→ LRS. To start, we will endow the category LRS with a factorization system.

Remark 3.28. The essential property of locally ringed spaces that we use is the fact that supp(OX ) = {x ∈ X | (OX )x ≠

0} = X or, equivalently, OX (V ) ≠ 0 for V ≠ ∅. Everything goes through with LRS replaced by the category of ringed spaces
satisfying this property.

Let (X, OX ) be a locally ringed space. There is a corresponding Grothendieck categoryMod(X) of sheaves of OX -modules.
Let Sub(OX ) be the lattice of subobjects of OX inMod(OX ), i.e. the lattice of ideal sheaves I ⊆ OX . Let LRS/X be the category
of morphisms f : Y −→ X in LRS.

We consider the following map:

I : Ob(LRS/X) −→ Sub(OX ) : (f : Y −→ X) −→ I(f ) = Ker(f ♯
: OX −→ f∗OY ).

In the category LRS, we recall the following special type of subobjects.

Definition 3.29. A morphism f : Y −→ X of locally ringed spaces is a closed immersion if the following conditions hold:

(1) f : Y −→ X is a homeomorphism of Y onto a closed subspace f (Y ) ⊆ X .
(2) f ♯

: OX −→ f∗OY is an epimorphism of sheaves.

A closed immersion of locally ringed spaces is a monomorphism in LRS. If f : Y −→ X is a closed immersion, we call Y
a closed subobject (or closed subspace) of X . Let Subcl(X) denote the poset of (isomorphism classes of) closed subobjects of
X . We obtain a restriction

I : Subcl(X) −→ Sub(OX ) : (i : Z −→ X) −→ I(Z) = I(i).

Example 3.30. Let X be a locally ringed space and let I ⊆ OX be an ideal. We describe an associated subspace Z(I) with
I(Z(I)) = I.

The sheaf of rings OX/I is finitely generated and hence

Z = supp(OX/I) = {x ∈ X | (OX )x/Ix ≠ 0}

is a closed subset of X . For the inclusion i : Z −→ X we put OZ = i−1(OX/I). It follows that i∗OZ = OX/I whence we can
put i♯ : OX −→ i∗OZ equal to the canonical quotient map. Clearly, this is a morphism of locally ringed spaces and we have
made Z into a closed subspace of X with associated ideal given by I.

Proposition 3.31. Let f : Y −→ X be a morphism of locally ringed spaces and let i : Z −→ X be a closed immersion. The
following are equivalent:

(1) There is a unique morphism g : Y −→ Z with f = ig.
(2) I(i) ⊆ I(f ).

Proof. Since i is a monomorphism, unicity of g will be automatic.
Suppose first the existence of g . We thus obtain f ♯

: OX −→ f∗OY as a composition f ♯ ∼= i∗(g♯)i♯. Thus, I(i) = Ker(i♯) ⊆

Ker(f ♯) = I(f ).
Suppose next that I(i) ⊆ I(f ). We may assume that Z ⊆ X is a closed subspace. We have f (Y ) ⊆ supp(f∗OY ) and

Z = supp(i∗OZ ). Since i♯ : OX −→ i∗OZ is surjective, the inclusion between ideals yields a factorization f ♯
= ϕi♯ for some

ϕ : i∗OZ −→ f∗OY . Hence, if (i∗OZ )x = 0 we have f ♯
x = 0 and hence (f∗OY )x = 0. This already shows that f (Y ) ⊆ Z . Denote

by g : X −→ X the natural factorization such that f = ig . We have f∗OY ∼= i∗g∗OY . On the level of sheaves of rings, we
define g♯

= i−1(ϕ). Now f = ig as morphisms of ringed spaces, as desired. �

Recall that a duality between posets is an order reversing isomorphism.

Proposition 3.32. The map I defines a duality

I : Subcl(X) −→ Sub(OX ) : (i : Z −→ X) −→ I(Z).

Its inverse is given by the construction in Example 3.30.

Proof. The construction in Example 3.30 shows I to be surjective. Furthermore, by Proposition 3.31 we have Z1 ≤ Z2 if and
only if I(Z2) ⊆ I(Z1). �

For a morphism f : Y −→ X in LRS, we call the subspace Z(I(f )) ⊆ X the locally ringed image of f .
Let M be the class of closed immersions and E the class of M-dense morphisms.

Proposition 3.33. (E, M) constitutes a factorization system on LRS. The image of a morphism with respect to this factorization
system is the locally ringed image.
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Proof. This follows from Lemma 3.7(2) by Proposition 3.31. �

Next we take a closer look at the class E.

Definition 3.34. A morphism f : Y −→ X is called ringed dominant if f ♯
: OX −→ f∗OY is a monomorphism.

Proposition 3.35. A morphism of locally ringed spaces is M-dense if and only if it is ringed dominant.

Proof. By definition f is M-dense if and only if the only closed immersion through which f factors is an isomorphism. By
Proposition 3.31, this corresponds to the fact that the only ideal inside I(f ) is the zero ideal. But this means that I(f ) = 0,
or, equivalently, that f ♯ is a monomorphism. �

Proposition 3.36. If f : Y −→ X is M-dense, the underlying morphism of topological spaces is dense, i.e. f (Y ) = X .

Proof. If f is not topologically dense, there is an open subset ∅ ≠ U ⊆ X with U ∩ f (Y ) = ∅. Hence, f∗OY (U) =

OY (f −1(U)) = OY (∅) = 0. But since OX (U) ≠ 0, OX (U) −→ f∗OY (U) cannot be a monomorphism. �

Next we turn our attention to the full subcategory Sch ⊆ LRS of schemes, i.e. locally ringed spaces that are locally
isomorphic to spectra of commutative rings. A closed immersion of schemes is a morphism of schemes which is a closed
immersion in LRS. If f : Y −→ X is a closed immersion of schemes, we call Y a closed subscheme of X . We denote by
Subsch(X) the poset of (isomorphism classes of) closed subschemes of X .

We recall the following:

Proposition 3.37 ([9, Proposition 10.30]). For a quasi-compact morphism f : Y −→ X of schemes, the sheaf I(f ) = Ker(f ♯
:

OX −→ f∗OY ) is quasi-coherent.

Lemma 3.38. Let X be a scheme and Z ∈ Subcl(X) a locally ringed subspace. The following are equivalent:

(1) Z is a scheme.
(2) I(Z) is a quasi-coherent sheaf.

Proof. By Proposition 3.37, (1) implies (2). The converse implication easily reduces to the case where X = Spec(A) is affine.
In this caseQch(X) ∼= Mod(A) and in the construction of Example 3.30, an ideal I ⊆ A gives rise to the corresponding scheme
Z(I) = Spec(A/I). �

Let Subqch(OX ) be the lattice of subobjects of OX in the category Qch(X) of quasi-coherent sheaves on X .

Proposition 3.39. The map I defines a duality

I : Subsch(X) −→ Subqch(OX ) : Z −→ I(Z).

Now we are in the right position to define a closure operator on the inclusion ι : Sch −→ LRS.

Proposition 3.40. There is an idempotent, weakly hereditary closure operator sch on ι with, for X ∈ Sch and Z ∈ Subcl(X),

sch(Z) = inf{Z ′
∈ Subsch(X) | Z ⊆ Z ′

} ∈ Subsch(X).

Proof. For the closure operator to be well defined, we have to make sure that Subsch(X) is closed under infima in Subcl(X).
Dually, it suffices that Subqch(OX ) is closed under suprema in Sub(OX ). But in both Grothendieck categories Qch(X) and
Mod(X), direct sums and images coincide, and a supremum supi Fi of subobjects is obtained as image of the canonical
morphism ⊕iFi −→ OX . Thus, the proposition is an application of Proposition 3.26 by Lemma 3.41. �

Lemma 3.41. Let f : Y −→ X be a morphism in LRS and consider Z ∈ Subcl(X) with ideal I = I(Z). The pullback f −1Z in LRS
is the closed subspace corresponding to the ideal f ∗(I) ⊆ f ∗OX = OY for the inverse image functor f ∗

: Mod(X) −→ Mod(Y ).
In particular, if f is a morphism of schemes and Z ∈ Subsch(X), we have f −1Z ∈ Subsch(Y ).

Proof. The second claim follows from the fact that f ∗ preserves quasi-coherence of sheaves. �

In Sch, let Msch = M ∩ Sch be the class of closed immersions between schemes and Esch the class of Msch-dense (or
equivalently sch-dense) morphisms. Let E′

= E ∩ Sch be the class of ringed dominant morphisms between schemes. For a
morphism f : Y −→ X in Sch with locally ringed image Z , sch(Z) is called the scheme theoretic image of f (see [11,9]).

Proposition 3.42. (Esch, Msch) constitutes a factorization system on Sch and (E′, Msch) is an (Esch, Msch)-closed structure on
Sch. The following are equivalent for a morphism f : Y −→ X of schemes:

(1) f is closed with respect to (E′, Msch).
(2) f is sch-closed.
(3) For every m ∈ Subsch(Y ), the locally ringed image of fm is a scheme (and hence coincides with the scheme theoretic image).

Proof. This follows from Propositions 3.25 and 3.26. �
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Example 3.43. A quasi-compact morphism f : Y −→ X is sch-closed. Indeed, for every m ∈ Subsch(Y ), the composition
fm remains quasi-compact and thus by Proposition 3.37, the locally ringed image is a scheme, hence coincides with the
scheme theoretic image. In particular, in this case Y is topologically dense in the scheme theoretic image. This property fails
in general, as [9, Exercise 10.18] shows.

Remarks 3.44. (1) In a similar fashion, the inclusion of the subcategory An ⊆ LRS of analytic spaces can be endowed with
a closure operator. A detailed analysis of functional topology in this category is work in progress and will appear in a
subsequent work.

(2) The fact that Msch is part of a factorization system on Sch was also used in [20], without explicit reference to the larger
category of locally ringed spaces.

3.7. Forgetful functors

In this section we consider a functor | · | : C −→ A between finitely complete categories. Note that we do not require
this functor to preserve finite limits.

We suppose thatA is endowedwith a factorization system (D, F0) and a (D, F0)-pre-closed structure (P , F0) forwhich
P ⊆ D . Note that this applies to the situation described in Section 3.4. Let F be the class of closed morphisms.

We suppose further that C is endowed with a factorization system (D, F0) and that the following holds:

(∗) |F0| ⊆ F0 and every a : A −→ |X | in F0 is isomorphic to |m| : |X ′
| −→ |Y | withm : X ′

−→ X in F0.

We denote (D, F0)-factorizations by f = ϕ(f )δ(f ).
Now define:

(1) P = {f ∈ C | |f | ∈ P }.

(2) H = {f ∈ C | |f | ∈ F }.

(3) D0 = {f ∈ C | |f | ∈ D}.

Both (D0, F0) and (P, F0) are readily seen to be (D, F0)-pre-closed structures. Denote the class of (D0, F0)-closed
morphisms by K and the class of (P, F0)-closed structures by F.

Proposition 3.45. We have:

(1) F ⊆ H.
(2) F = H ∩ K.
(3) If H − Prop ⊆ K, then H − Prop = F − Prop.
(4) If H − Sep ⊆ F0 − Sep, then H − Sep = F − Sep = F0 − Sep and (P, F0) is a (D, F0)-closed structure.

Proof. (1) Let f : X −→ Y in F and consider |f | : |X | −→ |Y |. By the assumption (∗), an arbitrary F0-subobject of |X | is
given by |m| : |X ′

| −→ |X | for somem : X ′
−→ X in F0. Consider the (D, F0)-factorization

X
f // Y

X ′

m

OO

δ
// Y ′.

ϕ

OO (1)

By definition, we have δ ∈ P and ϕ ∈ F0. Thus |δ| ∈ P ⊆ D and |ϕ| ∈ F0 is the (D, F0)-factorization of |f ||m| and since
|δ| ∈ P it follows that |f | ∈ F as desired.

(2) Let f : X −→ Y in H ∩ K and consider m : X ′
−→ X in F0. By assumption, in the factorization (1) we have |δ| ∈ D

and we have |ϕ| ∈ F0. Hence, |δ| and |ϕ| constitute the (D, F0) factorization of |f ||m| and since |f | is closed and |m| ∈ F0,
it follows that |δ| ∈ P whence δ ∈ P as desired.

(3) Since (P, F0) is a (D, F0)-pre-closed structure and by (1), we have F0 ⊆ F ⊆ H and hence F0 ⊆ F−Prop ⊆ H−Prop.
Since H ∈ CC, we thus have for every pullback of f and for every F0-subobject of the domain that the composition is in
H − Prop. Thus, it suffices to show that f ∈ H − Prop implies f ∈ F. Also, for every F0-subobjectmwe have that fm satisfies
the condition in (2), hence it follows that f ∈ F.

(4) Immediate from the inclusions F0 ⊆ F ⊆ H. �
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3.8. Application to schemes

Let C = Sch be the category of schemes and consider the forgetful functor | · | : Sch −→ Top. On A = Top, we take:

• F0 the class of closed embeddings.
• D the class of dense morphisms.
• P the class of surjective morphisms.

By Example 3.20, (P , F0) is a (D, F0)-closed structure and F is the class of standard closedmorphisms. On Sch, we take F0
to be the class of closed immersions. Then F0 ⊆ Mono and according to Section 3.6, (D = F0 − Dense, F0) is a factorization
system on Sch. With the notations of Section 3.7, H consists of the closed morphisms of schemes (note that this class was
denoted by F in Example 2.13), P consists of the surjective morphisms of schemes, D0 consists of the morphisms of schemes
that are dense on the topological level. Further, F is the class of (P, F0)-closed morphisms and K is the class of (D0, F0)-
closed morphisms. Finally, let E′ be the class of ringed dominant morphisms and L the class of sch-closed morphisms from
Section 3.6.

Proposition 3.46. We have:

(1) F ⊆ H.
(2) F = H ∩ K.
(3) H − Prop = F − Prop.
(4) H − Sep = F − Sep = F0 − Sep.
(5) (P, F0) is a (D, F0)-closed structure.
(6) L ⊆ K.

Proof. (6) By Proposition 3.36, E′
⊆ D0.

For the other claims, it suffices to check the conditions in Proposition 3.45.
(3) Morphisms in H-Prop are quasi-compact, so the result follows from Example 3.43 and (6).
(4) A H-separated morphism is well-known to be F0-separated. �

Remark 3.47. As recalled in Example 2.13, in Sch, a morphism is called separated if it is H-separated. It is called universally
closed if it is H-proper, and it is called proper it is H-perfect and of finite type. Thus, the (D, F0)-closed structure (P, F0)
yields the correct class of separated morphisms and the correct class of universally closed morphisms, called proper in
our terminology. When we restrict our attention to quasi-compact morphisms (or to the sch-closed or (D0, F0)-closed
morphisms), it also yields the correct class of closed morphisms.

3.9. Comparison functors

Let ϕ : C −→ C ′ be a finite limit preserving functor between finitely complete categories, and suppose C is endowed
with an (E, M)-closed structure (P, F0)with corresponding classF of closedmorphisms andC ′ is endowedwith an (E′, M′)-
closed structure (P′, F′

0)with corresponding class F′ of closedmorphisms.We then have the following way of obtaining that
ϕ reflects closed morphisms:

Proposition 3.48. In either of the following cases, we have ϕ−1(F′) ⊆ F:

(1) X ⊆ ϕ−1(X′) for X = F0, E, M and ϕ−1(X′) ⊆ X for X = F0, P.
(2) P = E and X ⊆ ϕ−1(X′) for X = F0, E, M and ϕ−1(F′

0) ⊆ F0.
(3) F0 = M and X ⊆ ϕ−1(X′) for X = E, M and ϕ−1(P′) ⊆ P.

Example 3.49. Consider the functor ϕ : FSch −→ Top of Example 2.18.We take for F0 = M the class of closed immersions,
for E the class of ringed dominant morphisms, and for P the class of surjections. We take for F′

0 = M′ the class of closed
embeddings, for E′ the class of dense morphisms and for P′ the class of surjections. By construction, closed immersions are
mapped to closed embeddings, and by the dictionary in [24] based upon [24, Proposition 2.2], ringed dominant morphisms
aremapped to densemorphisms and surjectivity is reflected by ϕ. Thus, we are in case (3) in Proposition 3.48whence closed
morphisms are reflected. We should note however, that the fact that closed morphisms are reflected follows directly from
[24, Proposition 2.2] as well.

4. Presheaf categories

Although the extended functional topology theory developed in Section 3 encompasses the examples of schemes, we
have lost some of the simplicity by the introduction of an additional input datum of so called surjective morphisms. Thus,
we still wonder whether it is possible to recover the correct classes of proper and separated morphisms in these categories
using only the original theory from [4]. In this section, we investigate this possibility by making use of presheaf categories.
Themain idea is the following: if C is the category we are interested in, and we have natural classes of proper and separated
morphisms inC, thenwe try to install the original functional topology setup from [4] on the category Ĉ of presheaves of sets
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on C. The category Ĉ is well-suited for this purpose. Indeed, it comes equipped with the (Epi,Mono)-factorization system,
and the class Epi is pullback stable. Thus, by Example 3.11 from [4], any pullback stable class F0 of monomorphisms which
is closed under compositions is the class of closed embeddings for an (Epi,Mono)-closed class F in the sense of [4], and F
consists precisely of the morphisms for which the image of a closed subobject is again a closed subobject.

Since we start with proposed classes of proper and separated morphisms on C, our aim is to define a class F0 on Ĉ such
that amorphism inC is proper (resp. separated) if and only if it is proper (resp. separated)with respect toFwhen considered
as amorphism in Ĉ. For F0, we propose to take precisely the images of proper-representable Ĉ-morphisms (see Section 4.2).
After analyzing the general situation in Section 4.3, we prove in Section 4.4 that taking for C the category of schemes, this
approach works. We also identify the F0-morphisms that belong to C as being precisely the proper monomorphisms. Thus,
this class contains the ordinary closed immersions, and when we restrict our attention to morphisms between schemes of
finite type, the two classes coincide. However, even in this case, and even for a closed morphism, the presheaf image will in
general not be a scheme, and should not be confused with the scheme theoretic image which we used in Section 3.

4.1. (E, M)-closed structures from stable classes

LetC be a finitely complete category endowedwith a factorization system (E, M)withM ⊆ Mono andE pullback-stable.
Let H be a stable class of morphisms in C (i.e. Iso ⊆ H and H closed under compositions and pullback-stable). We define
the class

F0 = {µ(h) | h ∈ H}.

Proposition 4.1. (E, F0) is an (E, M)-pre-closed structure.

Proof. Clearly, Iso ⊆ F0 ⊆ M and obviously Iso ⊆ E and E is closed under compositions.
Let us show first that F0 is pullback-stable. For m ∈ F0, we have an h = me with h ∈ H and e ∈ E. Taking a pullback of

this yields h̄ = m̄ē with h̄ ∈ H and ē ∈ E by the assumptions. Thus, m̄ ∈ F0 as desired.
Let us now show that F0 is closed under compositions. For m : A −→ B and m′

: B −→ C in F0 we write h = me and
h′

= m′e′ with h, h′
∈ H and e, e′

∈ E. Taking the pullback of f and e′, we obtain the diagram

A
m

��>
>>

>>
>>

>

D

e

OO

h
// B

m′

��?
??

??
??

?

P

ē′

OO

h̄
// E

e′

OO

h′

// C .

So we see that h′h̄ = m′meē′ with h′h̄ ∈ H. �

Let F be the class of closed morphisms associated to (E, F0).

Proposition 4.2. H ⊆ F − Prop.

Proof. Let h : X −→ Y in H. Since H is pullback-stable, it suffices to show that h ∈ F. So consider m : M −→ X in F0. We
obtain a diagram

X
h // Y

A

g
??��������

e
// M

m

OO

ϵ
// F

µ

OO

with g and hence hg in H, e and ϵ and hence ϵe in E, and µ in M. Hence, µ ∈ F0 as desired. �

Remark 4.3. The inclusion H ⊆ F expresses the intuitive fact that for a morphism in H, the image of an F0-subobject is
again an F0-subobject. This is comparable to the situation for (E, M)-closed classes, see Remark 3.10.

4.2. Representable morphisms

In this section, starting from a closed class on a category, we define an associated stable class on an enlargement of the
category.
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LetC ⊆ Ĉ be a fully faithful left exact inclusion between finitely complete categories. LetH be a closed class ofmorphisms
in C. A morphism f : X −→ Y in Ĉ is called H-representable if for every pullback

X
f // Y

P

OO

f ′
// C

OO

with C ∈ C, it follows that P ∈ C and f ′
∈ H. We denote the class of H-representable morphisms by H − Rep. A morphism

is called representable if it is Mor(C)-representable and we denote Rep = Mor(C) − Rep.

Lemma 4.4. (1) Iso ⊆ H − Rep.
(2) H − Rep is pullback-stable and closed under compositions.
(3) H − Rep ∩ Mor(C) = H − Prop.

Proof. Clear. �

4.3. Presheaf categories

Let C be a finitely complete category and consider the Yoneda embedding C ⊆ Ĉ = Fun(C
op

,Set). The category Ĉ
is endowed with the factorization system (Epi,Mono) and Epi is pullback stable. The image of a natural transformation
between presheaves is computed pointwise. Let H be a closed class on C and consider the class H − Rep on Ĉ. We define
the following class of morphisms in Ĉ:

F0 = {µ(h) | h ∈ H − Rep}.

Proposition 4.5. (Epi, F0) is an (Epi,Mono)-closed structure on Ĉ. Let F denote the associated class of closed morphisms.

(1) (H − Prop)C ⊆ H − Rep ⊆ (F − Prop)Ĉ .
(2) (H − Prop)C ∩ MonoC ⊆ H − Rep ∩ Mono ⊆ F0.

Proof. According to Proposition 4.1, (Epi, F0) is an (Epi,Mono)-pre-closed structure and according to Proposition 4.2,
H−Rep ⊆ (F−Prop)Ĉ . The other inclusions in (1) and (2) easily follow. Finally, it is a closed structure by Remark 3.14(1). �

Remark 4.6. Note that the (Epi,Mono)-closed structure (Epi, F0) on Ĉ fits entirely into Example 3.11. In particular, F is an
(Epi,Mono)-closed class in the sense of [4], see Definition 3.8.

Under an additional hypothesis, we can characterize the representable F0-morphisms as follows:

Proposition 4.7. Suppose C-retractions are H-right cancellable.

(1) H − Rep ∩ Mono = F0 ∩ Rep.
(2) (H − Prop)C ∩ MonoC = F0 ∩ Mor(C).

Proof. (2) follows from (1) by intersecting with the C-morphisms. For (1), the inclusion left in right follows from
Proposition 4.5(2). Conversely, letm : F −→ G be a representable morphism in F0. By taking the pullback along a C-object,
we may suppose that m is a C-morphism in F0. Thus, there exists h ∈ (H − Prop)C with h = me and e an epimorphism.
Then by Lemma 2.6, e is representable and e : H −→ F is a presheaf epimorphism between C-objects, i.e. a C-retraction.
By the assumption, it follows thatm ∈ (H − Prop)C as desired. �

Next we take a closer look at separated morphisms.

Proposition 4.8. We have

(1) ((H − Prop)C − Sep)C ⊆ (F − Sep)Ĉ ∩ Mor(C) = (F0 − Sep)Ĉ ∩ Mor(C).

If C-retractions are H-right cancellable, then

(2) ((H − Prop)C − Sep)C = (F − Sep)Ĉ ∩ Mor(C) = (F0 − Sep)Ĉ ∩ Mor(C).

If H is a stable class in C, we can replace (H − Prop)C by H in the above.

4.4. Application to schemes

Put C = Sch in the previous section and take H to be the usual class of closed morphisms, i.e. morphisms with an
underlying closed map of topological spaces. Let Ĉ, F0 and F be as above. Our aim is to prove that the (Epi,Mono)-closed
structure (Epi, F0) on Ĉ yields the classes of H-proper and H-separated morphisms (after restricting to C-morphisms). We
start with properness.
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Proposition 4.9. (1) H − Rep = (F − Prop)Ĉ ∩ Rep.
(2) (H − Prop)C = (F − Prop)Ĉ ∩ Mor(C).

Proof. (2) immediately follows from (1) by restricting to morphisms in C. For (1), the inclusion from left to right follows
from Proposition 4.2 (taking H to be H −Rep). Consider f : F −→ G in (F − Prop)Ĉ ∩Rep. Let C −→ G be a morphismwith
C ∈ C. We are to show that the pullback f ′

: P −→ C is in H. By assumption, P ∈ C and f ′
∈ F. For a closed subset X ⊆ C ,

let m : M −→ C be a closed subscheme with |M| = X . By Proposition 4.5(2), m ∈ F0 and so by definition of F and F0, we
obtain the following diagram

P
f ′ // C

M

m

OO

ϵ
// H

µ

OO

A
ϵ′

oo

g
__????????

with µ ∈ F0 ∩ M, ϵ ∈ E, g ∈ H − Rep and ϵ′
∈ E. Since C ∈ C, we necessarily have g ∈ H. We are to show that the set

theoretic image of the C-morphism f ′m is a closed subset of C . But the presheaf images of f ′m and g coincide, whence by
Lemma 4.10, so do the set theoretic images and we are ready. �

Lemma 4.10. Consider two morphism f : X −→ Y and f ′
: X ′

−→ Y of schemes and suppose the presheaf images
µ = µ(f ) = µ(f ′) : F −→ Y coincide. Then the set theoretic images f (X) ⊆ Y and f ′(X ′) ⊆ Y coincide as well.

Proof. Clearly the situation is symmetric. Consider ϵ = ϵ(f ) : X −→ F and ϵ′
= ϵ(f ′) : X ′

−→ F . Take a point x ∈ X
with residue field k. This point is represented by a morphism ξ : Spec(k) −→ X and its image f (x) ∈ Y is determined by
the composition f ξ : Spec(k) −→ X −→ F −→ Y . Now since ϵ′

: X ′
−→ F is an epimorphism, there is a morphism

ξ ′
: Spec(k) −→ X ′ with µϵξ = µϵ′ξ ′ and hence a point x′

∈ X ′ with f ′(x′) = y. �

We have a precise description of the representable F0-morphisms, and we obtain the correct class of separated
morphisms after restricting to C-morphisms:

Proposition 4.11. (1) F0 ∩ Rep = H − Rep ∩ Mono.
(2) F0 ∩ Mor(C) = (H − Prop)C ∩ MonoC .
(3) (F0 − Sep)Ĉ ∩ Mor(C) = (F − Sep)Ĉ ∩ Mor(C) = (H − Sep)C .

Proof. Since retractions of schemes are surjective on the level of underlying spaces, they are H-right cancellable and the
condition in Propositions 4.7 and 4.8(2) is fulfilled. �

Remark 4.12. For an H-propermorphism f : X −→ Y of schemes, the presheaf imageµ : F −→ Y belongs to F0. However,
it should not be confused with the scheme theoretic image m : Z −→ Y which also belongs to F0, where Z is a scheme
rather than a presheaf, but where the corresponding e : X −→ Z fails to be a presheaf epimorphism in general (the only
scheme morphisms that are presheaf epimorphisms are the retractions).

Remark 4.13. Since the usual closed immersions of schemes are always propermonomorphisms, they are always contained
in F0. For morphisms between schemes of finite type, the converse holds and the closed immersions are precisely the F0-
morphisms between such schemes.
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